SOME PROBLEMS OF LINEAR THERMOELASTICITY

IN THE GINZBURG-LANDAU THEORY OF PHASE TRANSITIONS

I. A. Kaliev and M. F. Mugafarov

UDC 517.95

The well-posedness of the problem of linear thermoelasticity in the Ginzburg-Landau theory of phase transitions is proved.

Key words: phase transitions, initial boundary-value problem, generalized solutions.

Various mathematical models for description of phase transitions in multidimensional elastic media with the use of the nonconvex free-energy function were considered in [1]. In [2], the problem of [1] obtained by linearizing the equations of the Landau theory of phase transitions was studied. In the present paper, we consider the initial boundary-value problem for the system obtained in [1] by linearizing the equations of the Ginzburg-Landau theory of phase transitions.

Let Ω be a bounded domain of the n-dimensional space $\mathbb{R}^{n}, \partial \Omega \in C^{3}, Q_{T}=\Omega \times(0, T)$ for $T>0$, $S_{T}=\partial \Omega \times(0, T)$ be the lateral surface of the cylinder Q_{T}, and Ω_{τ} be the cross section of Q_{T} formed by the plane $t=\tau$.

Problem 1. It is required to find the displacement vector $\boldsymbol{u}(\boldsymbol{x}, t)=\left(u^{(1)}(\boldsymbol{x}, t), \ldots, u^{(n)}(\boldsymbol{x}, t)\right)$ and temperature $\theta(\boldsymbol{x}, t)$ that satisfy in Q_{T} the equations

$$
\begin{gather*}
\frac{\partial^{2} \boldsymbol{u}}{\partial t^{2}}=-\alpha \nabla \theta+\mu \nabla \operatorname{div} \boldsymbol{u}-\gamma \nabla \Delta \operatorname{div} \boldsymbol{u}+\boldsymbol{f} \tag{1}\\
\frac{\partial \theta}{\partial t}=k \Delta \theta-\beta \frac{\partial}{\partial t}(\operatorname{div} \boldsymbol{u})+g \tag{2}
\end{gather*}
$$

subject to the initial conditions

$$
\begin{gather*}
\left.\boldsymbol{u}\right|_{\Omega_{0}}=\boldsymbol{u}_{0}(\boldsymbol{x}) \tag{3}\\
\left.\frac{\partial \boldsymbol{u}}{\partial t}\right|_{\Omega_{0}}=\boldsymbol{u}_{1}(\boldsymbol{x}), \tag{4}\\
\left.\theta\right|_{\Omega_{0}}=\theta_{0}(\boldsymbol{x}) \tag{5}
\end{gather*}
$$

and the boundary conditions

$$
\left.(\operatorname{div} \boldsymbol{u})\right|_{S_{T}}=b_{1}(\boldsymbol{s}, t),\left.\quad \Delta(\operatorname{div} \boldsymbol{u})\right|_{S_{T}}=b_{2}(\boldsymbol{s}, t),\left.\quad \theta\right|_{S_{T}}=\theta_{1}(\boldsymbol{s}, t)
$$

Here $\mu>0, \gamma>0, k>0, \alpha$, and β are constants, $\boldsymbol{f}=\boldsymbol{f}(\boldsymbol{x}, t), g=g(\boldsymbol{x}, t), \boldsymbol{u}_{0}(\boldsymbol{x}), \boldsymbol{u}_{1}(\boldsymbol{x}), \theta_{0}(\boldsymbol{x}), b_{1}(\boldsymbol{s}, t), b_{2}(\boldsymbol{s}, t)$, and $\theta_{1}(\boldsymbol{s}, t)$ are specified functions, $\boldsymbol{x}=\left(x^{(1)}, \ldots, x^{(n)}\right)$ are the spatial variables, and t is the time. Since the case of inhomogeneous boundary conditions reduces to the case of homogeneous boundary conditions, we assume below that $b_{1}(s, t)=b_{2}(s, t)=\theta_{1}(s, t)=0$.

We introduce the notation $v=\operatorname{div} \boldsymbol{u}$ and $\phi=\operatorname{div} \boldsymbol{f}$. We apply the divergence operator to the vector equation (1) and conditions (3) and (4). As a result, we obtain the following problem:

Sterlitamak State Pedagogical Institute, Sterlitamak 453100. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 44, No. 6, pp. 140-147, November-December, 2003. Original article submitted March 31, 2003.

866

Problem 1.1. It is required to find the functions $\theta(\boldsymbol{x}, t)$ and $v(\boldsymbol{x}, t)$ in Q_{T} that satisfy the equations

$$
\begin{gather*}
\frac{\partial^{2} v}{\partial t^{2}}=-\alpha \Delta \theta+\mu \Delta v-\gamma \Delta^{2} v+\phi \tag{6}\\
\frac{\partial \theta}{\partial t}=k \Delta \theta-\beta \frac{\partial v}{\partial t}+g \tag{7}
\end{gather*}
$$

the initial conditions (5) and

$$
\begin{array}{cl}
\left.v\right|_{\Omega_{0}}=v_{0}(\boldsymbol{x}), & v_{0}=\operatorname{div} \boldsymbol{u}_{0} \\
\left.\frac{\partial v}{\partial t}\right|_{\Omega_{0}}=v_{1}(\boldsymbol{x}), & v_{1}=\operatorname{div} \boldsymbol{u}_{1} \tag{9}
\end{array}
$$

and the boundary conditions

$$
\begin{gather*}
\left.v\right|_{S_{T}}=0 \tag{10}\\
\left.\Delta v\right|_{S_{T}}=0 \tag{11}\\
\left.\theta\right|_{S_{T}}=0 \tag{12}
\end{gather*}
$$

We assume that the functions θ and v are the classical solution of Problem 1.1. We multiply (6) by the function $\varphi \in C^{2}\left(\bar{Q}_{T}\right)$, which satisfies the condition

$$
\begin{equation*}
\left.\varphi\right|_{S_{T}}=0,\left.\quad \varphi\right|_{\Omega_{T}}=0, \tag{13}
\end{equation*}
$$

and integrate the resultant equality over the cylinder Q_{T}. Before doing this, we transform some integrals with allowance for the initial condition (9) and conditions (13):

$$
\begin{aligned}
& \int_{Q_{T}} v_{t t} \varphi d x d t=\int_{Q_{T}}\left(v_{t} \varphi\right)_{t} d x d t-\int_{Q_{T}} v_{t} \varphi_{t} d x d t=\int_{\Omega_{T}} v_{t} \varphi d x-\int_{\Omega_{0}} v_{t} \varphi d x-\int_{Q_{T}} v_{t} \varphi_{t} d x d t=-\int_{\Omega_{0}} v_{1}(x) \varphi(x, 0) d x-\int_{Q_{T}} v_{t} \varphi_{t} d x d t, \\
& \int_{Q_{T}} \varphi \Delta^{2} v d x d t=\int_{Q_{T}} \operatorname{div}(\varphi \nabla \Delta v) d x d t-\int_{Q_{T}} \nabla \Delta v \nabla \varphi d x d t=\int_{S_{T}} \frac{\partial(\Delta v)}{\partial \boldsymbol{n}} \varphi d s d t-\int_{Q_{T}} \nabla \Delta v \nabla \varphi d x d t=-\int_{Q_{T}} \nabla \Delta v \nabla \varphi d x d t .
\end{aligned}
$$

As a result, we obtain

$$
-\int_{\Omega_{0}} v_{1} \varphi d x-\int_{Q_{T}} v_{t} \varphi_{t} d x d t=\int_{Q_{T}}(\phi-\alpha \Delta \theta) \varphi d x d t+\mu \int_{Q_{T}} \Delta v \varphi d x d t+\gamma \int_{Q_{T}} \nabla \Delta v \nabla \varphi d x d t
$$

Using the resultant identity, we introduce the concept of the generalized solution of Problem 1.1.
Definition 1. We call the pair of functions $\{\theta, v\}$, where $\theta \in W_{2}^{3,1}\left(Q_{T}\right)$ and $v \in W_{2}^{3,1}\left(Q_{T}\right)$, the generalized solution of Problem 1.1 if θ satisfies Eq. (7) almost everywhere in Q_{T} and conditions (5) and (12) and the function v satisfies the initial condition (8), the boundary conditions (10) and (11), and the identity

$$
\begin{equation*}
\int_{Q_{T}}\left(\gamma \nabla \Delta v \nabla \varphi+\mu \Delta v \varphi+v_{t} \varphi_{t}\right) d x d t=-\int_{\Omega_{0}} v_{1} \varphi d x-\int_{Q_{T}}(\phi-\alpha \Delta \theta) \varphi d x d t \tag{14}
\end{equation*}
$$

for all $\varphi \in W_{2}^{1}\left(Q_{T}\right)$ satisfying the conditions

$$
\begin{equation*}
\left.\varphi\right|_{S_{T}}=0,\left.\quad \varphi\right|_{\Omega_{T}}=0 \tag{15}
\end{equation*}
$$

Given the solution $\{\theta, v\}$ of Problem 1.1, one can determine the generalized solution of Problem 1 as $\{\theta, \boldsymbol{u}\}$, where \boldsymbol{u} is found from the equation

$$
\frac{\partial^{2} \boldsymbol{u}}{\partial t^{2}}=-\alpha \nabla \theta+\mu \nabla v-\gamma \nabla \Delta v+\boldsymbol{f}
$$

with the known right side, subject to the initial conditions (3) and (4).

Theorem 1. Let $\partial \Omega \in C^{3}, \phi, g \in W_{2}^{1}\left(Q_{T}\right), \theta_{0} \in W_{2}^{3}(\Omega), v_{0} \in W_{2}^{3}(\Omega), v_{1} \in W_{2}^{1}(\Omega),\left.\phi\right|_{S_{T}}=\left.g\right|_{S_{T}}=0$, and $\left.\theta_{0}\right|_{\partial \Omega}=\left.v_{0}\right|_{\partial \Omega}=\left.\Delta v_{0}\right|_{\partial \Omega}=\left.v_{1}\right|_{\partial \Omega}=0$. Then, the generalized solution $\{\theta, v\}$ of Problem 1.1 exists and is unique. In this case, the following estimates are valid:

$$
\begin{align*}
\|\theta\|_{W_{2}^{3,1}\left(Q_{T}\right)} \leqslant C\left(\left\|\theta_{0}\right\|_{W_{2}^{3}(\Omega)}+\left\|v_{0}\right\|_{W_{2}^{3}(\Omega)}+\left\|v_{1}\right\|_{W_{2}^{1}(\Omega)}+\|g\|_{W_{2}^{1}\left(Q_{T}\right)}+\|\phi\|_{W_{2}^{1}\left(Q_{T}\right)}\right) \tag{16}\\
\|v\|_{W_{2}^{3,1}\left(Q_{T}\right)} \leqslant C\left(\left\|\theta_{0}\right\|_{W_{2}^{3}(\Omega)}+\left\|v_{0}\right\|_{W_{2}^{3}(\Omega)}+\left\|v_{1}\right\|_{W_{2}^{1}(\Omega)}+\|g\|_{W_{2}^{1}\left(Q_{T}\right)}+\|\phi\|_{W_{2}^{1}\left(Q_{T}\right)}\right) \tag{17}
\end{align*}
$$

(C are constants independent of $\theta_{0}, v_{0}, v_{1}, g$, and ϕ, but C may depend on T).
Proof. To prove that the generalized solution of Problem 1.1 exists, we use the principle of contracting mappings. We construct the mapping

$$
F: \quad M_{T} \rightarrow W_{2}^{3,1}\left(Q_{T}\right)
$$

where $M_{T}=\left\{\theta \in W_{2}^{3,1}\left(Q_{T}\right):\|\theta\|_{W_{2}^{3,1}\left(Q_{T}\right)} \leqslant m_{0},\left.\theta\right|_{\Omega_{0}}=\theta_{0}(\boldsymbol{x})\right.$, and $\left.\left.\theta\right|_{S_{T}}=0\right\}$, which acts in the following manner. Given the function $\theta(\boldsymbol{x}, t) \in M_{T}$, we determine the function $v(\boldsymbol{x}, t) \in W_{2}^{3,1}\left(Q_{T}\right)$ that satisfies identity (14) and conditions (8), (10), and (11). Determining the function v, we find the function $\tilde{\theta}(\boldsymbol{x}, t) \in W_{2}^{3,1}\left(Q_{T}\right)$ that satisfies the equation

$$
\tilde{\theta}_{t}=k \Delta \tilde{\theta}-\beta v_{t}+g
$$

and the conditions $\left.\tilde{\theta}\right|_{\Omega_{0}}=\theta_{0}(\boldsymbol{x})$ and $\left.\tilde{\theta}\right|_{S_{T}}=0$.
Let $\tilde{\theta}=F\langle\theta\rangle$. We show that, for reasonably small T, the mapping F is contracting and maps M_{T} into itself.
Lemma 1. Let $\theta(\boldsymbol{x}, t) \in M_{T}$. Hence, the function v determined for a given function θ in constructing F satisfies the estimates

$$
\begin{gather*}
\|v\|_{W_{2}^{3}\left(\Omega_{t}\right)}^{2}+\left\|v_{t}\right\|_{L_{2}\left(\Omega_{t}\right)}^{2} \leqslant c\left(\left\|v_{0}\right\|_{W_{2}^{3}(\Omega)}^{2}+\left\|v_{1}\right\|_{W_{2}^{1}(\Omega)}^{2}\right)+c T\left(\|\theta\|_{W_{2}^{3,1}\left(Q_{T}\right)}^{2}+\|\phi\|_{W_{2}^{1}\left(Q_{T}\right)}^{2}\right) \tag{18}\\
\|v\|_{W_{2}^{3,1}\left(Q_{T}\right)}^{2} \leqslant c T\left(\left\|v_{0}\right\|_{W_{2}^{3}(\Omega)}^{2}+\left\|v_{1}\right\|_{W_{2}^{1}(\Omega)}^{2}\right)+c T^{2}\left(\|\theta\|_{W_{2}^{3,1}\left(Q_{T}\right)}^{2}+\|\phi\|_{W_{2}^{1}\left(Q_{T}\right)}^{2}\right) \tag{19}
\end{gather*}
$$

where c are constants independent of $T, \theta_{0}, v_{0}, v_{1}$, and ϕ.
Proof. Let $u_{1}(\boldsymbol{x}), u_{2}(\boldsymbol{x}), \ldots$ be a system orthonormalized in $L_{2}(\Omega)$ that contains all generalized eigenfunctions of the problem

$$
\Delta u_{k}=\lambda_{k} u_{k}, \quad \boldsymbol{x} \in \Omega,\left.\quad u_{k}\right|_{\partial \Omega}=0 \quad(k=1,2, \ldots)
$$

The system $u_{1}(\boldsymbol{x}), u_{2}(\boldsymbol{x}), \ldots$ is the orthonormalized basis in $L_{2}(\Omega), \lambda_{k}<0$ and $\lambda_{k} \rightarrow-\infty$ as $k \rightarrow \infty$ [3, p. 191]. The function $\Phi(\boldsymbol{x}, t)=\phi-\alpha \Delta \theta$ belongs to $W_{2}^{1}\left(Q_{T}\right)$. It follows from the Fubini theorem that $\Phi(\boldsymbol{x}, t) \in$ $L_{2}\left(\Omega_{t}\right)$ for $t \in(0, T)$. For all $t \in(0, T)$, the functions $v_{0}(\boldsymbol{x}), v_{1}(\boldsymbol{x})$, and $\Phi(\boldsymbol{x}, t)$ can be expanded in the Fourier series in terms of the functions $u_{1}(\boldsymbol{x}), u_{2}(\boldsymbol{x}), \ldots$:

$$
\begin{equation*}
v_{0}(\boldsymbol{x})=\sum_{k=1}^{\infty} v_{0 k} u_{k}(\boldsymbol{x}), \quad v_{1}(\boldsymbol{x})=\sum_{k=1}^{\infty} v_{1 k} u_{k}(\boldsymbol{x}), \quad \Phi(\boldsymbol{x}, t)=\sum_{k=1}^{\infty} \Phi_{k}(t) u_{k}(\boldsymbol{x}) \tag{20}
\end{equation*}
$$

Here $v_{0 k}=\left(v_{0}, u_{k}\right)_{L_{2}(\Omega)}, v_{1 k}=\left(v_{1}, u_{k}\right)_{L_{2}(\Omega)}$, and $\Phi_{k}(t)=\int_{\Omega} \Phi(\boldsymbol{x}, t) u_{k}(\boldsymbol{x}) d x$.
Since $\left|\Phi_{k}(t)\right|^{2} \leqslant \int_{\Omega} \Phi^{2}(\boldsymbol{x}, t) d x \int_{\Omega} u_{k}^{2}(\boldsymbol{x}) d x=\int_{\Omega} \Phi^{2}(\boldsymbol{x}, t) d x$, then $\Phi_{k}(t) \in L_{2}(0, T)$. According to the Parseval-Steklov equality, we obtain

$$
\begin{equation*}
\sum_{k=1}^{\infty} v_{0 k}^{2}=\left\|v_{0}\right\|_{L_{2}(\Omega)}^{2}, \quad \sum_{k=1}^{\infty} v_{1 k}^{2}=\left\|v_{1}\right\|_{L_{2}(\Omega)}^{2} \tag{21}
\end{equation*}
$$

and, for $t \in(0, T)$,

$$
\sum_{k=1}^{\infty} \Phi_{k}^{2}(t)=\int_{\Omega} \Phi^{2}(\boldsymbol{x}, t) d x
$$

Hence, we have

$$
\sum_{k=1}^{\infty} \Phi_{k}^{2}(t)=\int_{\Omega} \Phi^{2}(\boldsymbol{x}, t) d x
$$

For the specified function $\theta \in M_{T}$, the solution v of problem (14), (8), (10), (11) can be written in the form of the series

$$
\begin{equation*}
v(\boldsymbol{x}, t)=\sum_{k=1}^{\infty} U_{k}(t) u_{k}(\boldsymbol{x}) \tag{23}
\end{equation*}
$$

where

$$
\begin{align*}
U_{k}(t)= & v_{0 k} \cos \left(\sqrt{\gamma \lambda_{k}^{2}-\mu \lambda_{k}} t\right)+\frac{v_{1 k}}{\sqrt{\gamma \lambda_{k}^{2}-\mu \lambda_{k}}} \sin \left(\sqrt{\gamma \lambda_{k}^{2}-\mu \lambda_{k}} t\right) \\
& +\frac{1}{\sqrt{\gamma \lambda_{k}^{2}-\mu \lambda_{k}}} \int_{0}^{t} \Phi_{k}(\tau) \sin \left(\sqrt{\gamma \lambda_{k}^{2}-\mu \lambda_{k}}(t-\tau)\right) d \tau \tag{24}
\end{align*}
$$

Indeed, the function $U_{k}(t)$ belongs to $W_{2}^{2}(0, T)$, satisfies the initial conditions $U_{k}(0)=v_{0 k}$ and $U_{k}^{\prime}(0)=v_{1 k}$ at $t=0$, and is a solution of the equation

$$
U_{k}^{\prime \prime}+\left(\gamma \lambda_{k}^{2}-\mu \lambda_{k}\right) U_{k}=\Phi_{k}
$$

Since the function $V_{k}(\boldsymbol{x}, t)=U_{k}(t) u_{k}(\boldsymbol{x})$ and any function $\varphi \in W_{2}^{1}\left(Q_{T}\right)$ that obeys conditions (15) satisfy the relations

$$
\begin{gathered}
\int_{Q_{T}} \nabla \Delta V_{k} \nabla \varphi d x d t=\lambda_{k} \int_{Q_{T}} \nabla V_{k} \nabla \varphi d x d t=-\lambda_{k}^{2} \int_{Q_{T}} V_{k} \varphi d x d t, \quad \mu \int_{Q_{T}} \Delta V_{k} \varphi d x d t=\mu \lambda_{k} \int_{Q_{T}} V_{k} \varphi d x d t \\
\int_{Q_{T}} V_{k t} \varphi_{t} d x d t=\int_{\Omega} u_{k}(\boldsymbol{x})\left(\int_{0}^{T} U_{k}^{\prime}(t) \varphi_{t} d t\right) d x=\int_{\Omega} u_{k}(\boldsymbol{x})\left(-v_{1 k} \varphi(\boldsymbol{x}, 0)-\int_{0}^{T} U_{k}^{\prime \prime}(t) \varphi d t\right) d x \\
=-v_{1 k} \int_{\Omega} u_{k}(\boldsymbol{x}) \varphi(\boldsymbol{x}, 0) d x-\int_{Q_{T}} u_{k}(\boldsymbol{x}) \Phi_{k} \varphi d x d t+\left(\gamma \lambda_{k}^{2}-\mu \lambda_{k}\right) \int_{Q_{T}} V_{k} \varphi d x d t
\end{gathered}
$$

the function $V_{k}(\boldsymbol{x}, t)$ satisfies the integral identity

$$
\int_{Q_{T}}\left(\gamma \nabla \Delta V_{k} \nabla \varphi+\mu \Delta V_{k} \varphi+V_{k t} \varphi_{t}\right) d x d t=-v_{1 k} \int_{\Omega_{0}} u_{k}(\boldsymbol{x}) \varphi d x-\int_{Q_{T}} \Phi_{k}(t) u_{k}(\boldsymbol{x}) \varphi d x d t
$$

Formula (24) implies that, for all $t \in[0, T]$, we have

$$
\begin{aligned}
&\left|U_{k}(t)\right| \leqslant\left|v_{0 k}\right|+\left|v_{1 k}\right|\left|\gamma \lambda_{k}^{2}-\mu \lambda_{k}\right|^{-1 / 2}+\left|\gamma \lambda_{k}^{2}-\mu \lambda_{k}\right|^{-1 / 2} \int_{0}^{T}\left|\Phi_{k}(t)\right| d t \\
& U_{k}^{2}(t) \leqslant 3\left(v_{0 k}^{2}+v_{1 k}^{2}\left|\gamma \lambda_{k}^{2}-\mu \lambda_{k}\right|^{-1}+T\left|\gamma \lambda_{k}^{2}-\mu \lambda_{k}\right|^{-1} \int_{0}^{T} \Phi_{k}^{2}(t) d t\right) \\
&\left|\frac{d U_{k}}{d t}\right| \leqslant\left|v_{0 k}\right|\left|\gamma \lambda_{k}^{2}-\mu \lambda_{k}\right|^{1 / 2}+\left|v_{1 k}\right|+\int_{0}^{T}\left|\Phi_{k}(t)\right| d t \\
&\left|\frac{d U_{k}}{d t}\right|^{2} \leqslant 3\left(v_{0 k}^{2}\left|\gamma \lambda_{k}^{2}-\mu \lambda_{k}\right|+v_{1 k}^{2}+T \int_{0}^{T} \Phi_{k}^{2}(t) d t\right)
\end{aligned}
$$

Since, by the conditions of Theorem 1, the function $v_{0} \in W_{2}^{3}(\Omega),\left.v_{0}\right|_{\partial \Omega}=0,\left.\Delta v_{0}\right|_{\partial \Omega}=0$, its Fourier series (20) in the functions $\left\{u_{k}\right\}$ converges to it in the norm of the space $W_{2}^{3}(\Omega)[3$, p. 253]. Similarly, the corresponding Fourier series for the functions v_{1} and Φ converge to them in the norm of the space $W_{2}^{1}(\Omega)$. In this case, the following estimates are valid:

$$
\begin{equation*}
\sum_{k=1}^{\infty} v_{0 k}^{2}\left|\lambda_{k}^{3}\right| \leqslant c\left\|v_{0}\right\|_{W_{2}^{3}(\Omega)}^{2}, \quad \sum_{k=1}^{\infty} v_{1 k}^{2}\left|\lambda_{k}\right| \leqslant c\left\|v_{1}\right\|_{W_{2}^{1}(\Omega)}^{2}, \quad \sum_{k=1}^{\infty}\left|\lambda_{k}\right| \int_{0}^{T} \Phi_{k}^{2} d t \leqslant c\|\Phi\|_{W_{2}^{1}\left(Q_{T}\right)}^{2} \tag{25}
\end{equation*}
$$

We consider the partial sum of series (23)

$$
v_{N}(\boldsymbol{x}, t)=\sum_{k=1}^{N} U_{k}(t) u_{k}(\boldsymbol{x})
$$

For any $t \in[0, T]$, the function $v_{N}(\boldsymbol{x}, t)$ and its derivative with respect to t belong to $W_{2}^{3}(\Omega)$, and the following estimates hold:

$$
\begin{gather*}
\left\|v_{N}\right\|_{W_{2}^{3}\left(\Omega_{t}\right)}^{2}=\left\|\sum_{k=1}^{N} U_{k}(t) u_{k}(\boldsymbol{x})\right\|_{W_{2}^{3}\left(\Omega_{t}\right)}^{2}=\int_{\Omega}\left[\left(\sum_{k=1}^{N} U_{k}(t) u_{k}(\boldsymbol{x})\right)^{2}+\left(\sum_{i=1}^{n} \sum_{k=1}^{N} U_{k}(t) u_{k x_{i}}(\boldsymbol{x})\right)^{2}\right. \\
\left.+\left(\sum_{i, j=1}^{n} \sum_{k=1}^{N} U_{k}(t) u_{k x_{i} x_{j}}(\boldsymbol{x})\right)^{2}+\left(\sum_{i, j, l=1}^{n} \sum_{k=1}^{N} U_{k}(t) u_{k x_{i} x_{j} x_{l}}(\boldsymbol{x})\right)^{2}\right] d x \\
\leqslant c \int_{\Omega}\left(\sum_{i, j, l=1}^{n} \sum_{k=1}^{N} U_{k}(t) u_{k x_{i} x_{j} x_{l}}(\boldsymbol{x})\right)^{2} d x \leqslant c \int_{\Omega} \sum_{i, j=1}^{n} \sum_{k=1}^{N} U_{k}^{2}(t)\left|\frac{\partial\left(\nabla u_{k}(\boldsymbol{x})\right)}{\partial x_{i} \partial x_{j}}\right|^{2} d x \\
\leqslant c \int_{\Omega} \sum_{k=1}^{N} U_{k}^{2}(t)\left|\Delta \nabla u_{k}\right|^{2} d x \leqslant c \sum_{k=1}^{N} U_{k}^{2}(t) \lambda_{k}^{2} \int_{\Omega}\left|\nabla u_{k}\right|^{2} d x \tag{26}\\
=c \sum_{k=1}^{N} U_{k}^{2}(t)\left|\lambda_{k}\right|^{3} \leqslant c \sum_{k=1}^{N}\left(v_{0 k}^{2}\left|\lambda_{k}\right|^{3}+v_{1 k}^{2} \frac{\lambda_{k}^{2}}{\gamma\left|\lambda_{k}-\mu / \gamma\right|}+T \frac{\lambda_{k}^{2}}{\gamma\left|\lambda_{k}-\mu / \gamma\right|} \int_{0}^{T} \Phi_{k}^{2} d t\right) \\
\leqslant c \sum_{k=1}^{N}\left(v_{0 k}^{2}\left|\lambda_{k}\right|^{3}+v_{1 k}^{2}\left|\lambda_{k}\right|+T\left|\lambda_{k}\right| \int_{0}^{T} \Phi_{k}^{2} d t\right), \\
\left\|\frac{\partial v_{N}}{\partial t}\right\|_{L_{2}\left(\Omega_{t}\right)}^{2}=\left\|\sum_{k=1}^{N} U_{k}^{\prime}(t) u_{k}(\boldsymbol{x})\right\|_{L_{2}\left(\Omega_{t}\right)}^{2}=\sum_{k=1}^{N}\left(U_{k}^{\prime}(t)\right)^{2} \\
\leqslant c \sum_{k=1}^{N}\left(v_{0 k}^{2}\left|\gamma \lambda_{k}^{2}-\mu \lambda_{k}\right|+v_{1 k}^{2}+T \int_{0}^{T} \Phi_{k}^{2} d t\right) \leqslant c \sum_{k=1}^{N}\left(v_{0 k}^{2}\left(\gamma \lambda_{k}^{2}+\mu\left|\lambda_{k}\right|\right)+v_{1 k}^{2}+T \Phi_{0}^{T} \Phi_{k}^{2} d t\right) .
\end{gather*}
$$

Passing to the limit in (26) as $N \rightarrow \infty$ and bearing in mind (21), (22), and (25), we obtain estimate (18) in Lemma 1. Estimate (19) follows from (18) after integration with respect to time from 0 to T.

Lemma 2. Let $\theta(\boldsymbol{x}, t) \in M_{T}$. Then, the following estimate is valid for the function $\tilde{\theta}=F\langle\theta\rangle$:

$$
\|\tilde{\theta}\|_{W_{2}^{3}\left(\Omega_{t}\right)}^{2}+\|\tilde{\theta}\|_{W_{2}^{3,1}\left(Q_{T}\right)}^{2} \leqslant c \mathrm{e}^{2 c_{1} T}(T+1)\left(\left\|\theta_{0}\right\|_{W_{2}^{3}(\Omega)}^{2}+\|v\|_{W_{2}^{3,1}\left(Q_{T}\right)}^{2}+\|g\|_{W_{2}^{1}\left(Q_{T}\right)}^{2}\right)
$$

(c and c_{1} are constants independent of $T, \theta_{0}, v_{0}, v_{1}, g$, and ϕ).
Lemma 2 is a corollary of estimate (6.10) from [4, p. 207].
Lemma 3. There exist a constant $m_{0}>0$ and a time $T_{1}>0$ such that F is a contracting mapping and maps $M_{T_{1}}$ into itself.

Proof. Let $\theta \in M_{T}$. Then, we have

$$
\|\theta\|_{W_{2}^{3,1}\left(Q_{T}\right)}^{2} \leqslant m_{0}^{2}
$$

Lemmas 1 and 2 imply the estimate

$$
\begin{gathered}
\|\tilde{\theta}\|_{W_{2}^{3,1}\left(Q_{T}\right)}^{2} \leqslant c \mathrm{e}^{2 c_{1} T}(T+1)\left(\left\|\theta_{0}\right\|_{W_{2}^{3}(\Omega)}^{2}+\|g\|_{W_{2}^{1}\left(Q_{T}\right)}^{2}\right. \\
\left.+T\left(\left\|v_{0}\right\|_{W_{2}^{3}(\Omega)}^{2}+\left\|v_{1}\right\|_{W_{2}^{1}(\Omega)}^{2}\right)+T^{2}\left(m_{0}^{2}+\|\phi\|_{W_{2}^{1}\left(Q_{T}\right)}^{2}\right)\right) \\
\leqslant C_{1}(T)\left(\left\|\theta_{0}\right\|_{W_{2}^{3}(\Omega)}^{2}+\|g\|_{W_{2}^{1}\left(Q_{T}\right)}^{2}+\left\|v_{0}\right\|_{W_{2}^{3}(\Omega)}^{2}+\left\|v_{1}\right\|_{W_{2}^{1}(\Omega)}^{2}+\|\phi\|_{W_{2}^{1}\left(Q_{T}\right)}^{2}\right)+C_{2}(T) T^{2} m_{0}^{2} .
\end{gathered}
$$

If we choose

$$
m_{0}^{2}>2 C_{1}(T)\left(\left\|\theta_{0}\right\|_{W_{2}^{3}(\Omega)}^{2}+\left\|v_{0}\right\|_{W_{2}^{3}(\Omega)}^{2}+\left\|v_{1}\right\|_{W_{2}^{1}(\Omega)}^{2}+\|g\|_{W_{2}^{1}\left(Q_{T}\right)}^{2}+\|\phi\|_{W_{2}^{1}\left(Q_{T}\right)}^{2}\right),
$$

then, for reasonably small $T_{1}>0$, we can satisfy the estimate

$$
\|\tilde{\theta}\|_{W_{2}^{3,1}\left(Q_{T_{1}}\right)}^{2} \leqslant m_{0}^{2}
$$

i.e., the mapping F acts from $M_{T_{1}}$ to $M_{T_{1}}$.

Let us show that the mapping F is contracting. Let $\theta^{(i)} \in M_{T_{1}}, i=1,2$. For the corresponding functions $v^{(i)}$ from Lemma 1, we obtain the estimate

$$
\left\|v^{(1)}-v^{(2)}\right\|_{W_{2}^{3,1}\left(Q_{T_{1}}\right)}^{2} \leqslant c T_{1}^{2}\left\|\theta^{(1)}-\theta^{(2)}\right\|_{W_{2}^{3,1}\left(Q_{T_{1}}\right)}^{2}
$$

Lemma 2 yields the estimate

$$
\begin{gathered}
\left\|F\left\langle\theta^{(1)}\right\rangle-F\left\langle\theta^{(2)}\right\rangle\right\|_{W_{2}^{3,1}\left(Q_{T_{1}}\right)}^{2}=\left\|\tilde{\theta}^{(1)}-\tilde{\theta}^{(2)}\right\|_{W_{2}^{3,1}\left(Q_{T_{1}}\right)}^{2} \\
\leqslant c \mathrm{e}^{2 c_{1} T_{1}}\left(T_{1}+1\right)\left\|v^{(1)}-v^{(2)}\right\|_{W_{2}^{3,1}\left(Q_{T_{1}}\right)}^{2} \leqslant c \mathrm{e}^{2 c_{1} T_{1}}\left(T_{1}+1\right) T_{1}^{2}\left\|\theta^{(1)}-\theta^{(2)}\right\|_{W_{2}^{3,1}\left(Q_{T_{1}}\right)}^{2} .
\end{gathered}
$$

If T_{1} is chosen so that $c \mathrm{e}^{2 c_{1} T_{1}}\left(T_{1}+1\right) T_{1}^{2}=q<1$, the mapping F is contracting.
By the Banach theorem on contracting mappings, the set $M_{T_{1}}$ contains a single fixed point θ^{*}, which, together with the corresponding function v^{*}, is the solution of Problem 1.1 in the time interval $\left[0, T_{1}\right]$. The resulting solution can be continued to the intervals $\left[T_{1}, T_{2}\right], \ldots,\left[T_{k}, T_{k+1}\right]$, where $T_{k+1}-T_{k}>\delta>0$ and δ does not depend on the number k. This follows from the estimates of Lemmas 1 and 2 . Hence, the solution can be continued to any $T>0$.

The uniqueness of the solution is proved using the rule of contradiction and estimates of Lemmas 1 and 2.
Estimate (16) follows from the fact that $\theta^{*}(\boldsymbol{x}, t) \in M_{T}$. Estimate (17) follows from (16) and Lemma 1. Theorem 1 is proved.

Remark 1. All the results can be extended to the case where the boundary conditions (10) and (12) are replaced by conditions of the form

$$
\left.\left(\frac{\partial(\operatorname{div} \boldsymbol{u})}{\partial \boldsymbol{n}}+\sigma_{1} \operatorname{div} \boldsymbol{u}\right)\right|_{S_{T}}=0,\left.\quad\left(\frac{\partial \theta}{\partial \boldsymbol{n}}+\sigma_{2} \theta\right)\right|_{S_{T}}=0
$$

where σ_{i} are functions specified on S_{T} and \boldsymbol{n} is the external normal to $\partial \Omega$.
Remark 2. For a smoother boundary of the domain $\partial \Omega$ and smoother data of the problem, one obtains smoother solutions, including the classical solution.

REFERENCES

1. I. A. Kaliev, "Mathematical modeling of elastic phase transitions," J. Appl. Mech. Tech. Phys., $\mathbf{3} 7$, No. 1, 54-61 (1996).
2. I. A. Kaliev, "Well-posedness of one problem of linear thermoelasticity," in: Topical Problems of Contemporary Mathematics (collected scientific papers) [in Russian], Vol. 1, Izd. Novosib. Univ., Novosibirsk (1995), pp. 67-72.
3. V. P. Mikhailov, Partial Differential Equations [in Russian], Nauka, Moscow (1983).
4. O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society. Providence, Rhode Island (1968).
